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Figure 3.  Faults mapped in Chisago 
County superimposed on first vertical 
derivative aeromagnetic data (Chandler and 
others, 2004).  All faults except those in 
extreme southeastern Chisago County are 
part of major fault zones along the western 
side of the Midcontinent Rift System, 
recognizable by strong, abrupt, linearly 
extensive contrasts in magnetic intensity.  
The faults in the southeastern part of the 
county do not appear to correspond to 
distinct, linear anomalies.  Faults that 
displace Paleozoic bedrock, shown as solid 
pink lines, were reactivated during and after 
Early Paleozoic time.  Their position at 
the bedrock surface does not everywhere 
correspond to the magnetic anomaly that 
marks the position of the major faults in 
underlying Mesoproterozoic bedrock, but 
their similar trends and close proximity 
indicate they are related features.  Dashed 
pink line shows another major Midcontinent 
Rift System fault that does not appear to 
displace Paleozoic bedrock.
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	 _w	 Wonewoc Sandstone (Late Cambrian)—This sandstone unit, formerly referred to as 
the Ironton-Galesville Sandstone, is composed mostly of fine- to coarse-grained, 
moderately to well sorted, light gray, cross-stratified, quartz sandstone (Mossler, 
2008).  White, brown, and black linguliform brachiopod shells are locally abundant.  
The upper part is the coarsest-grained; the lower part is finer-grained, better sorted, 
and progressively finer-grained toward its base.  The very fine-grained sandstone in 
the lower part is feldspathic.  The thickness of the formation is 75 to 110 feet (23 to 
34 meters), except where it pinches out in unconformable contact against knobs of 
Keweenawan basalt near Taylors Falls.  The Wonewoc Sandstone is conformable with 
overlying and underlying formations; however, there is a subtle unconformity marked 
by a pebbly sandstone layer within the formation (Runkel and others, 1998).

	 _e	 Eau Claire Formation (Middle to Late Cambrian)—The formation is composed of 
yellowish-gray to pale olive-gray, fine- to very fine-grained, feldspathic sandstone, 
siltstone, and shale.  White and brown linguliform brachiopod shells are common.  
The Eau Claire Formation gradually coarsens to the north across Chisago County, 
and as a result is composed dominantly of very fine- to fine-grained sandstone in 
the northern one-half of the county.  The formation ranges from 60 to 90 feet (18 
to 27 meters) in thickness, except where it pinches out in unconformable contact 
against knobs of Keweenawan basalt near Taylors Falls.  The contact with the Mt. 
Simon Sandstone is conformable.

	 _m	 Mt. Simon Sandstone (Middle Cambrian)—The Mt. Simon Sandstone is pale yellowish-
brown to grayish-orange-pink to light gray, medium- to coarse-grained, quartz 
sandstone.  Interbeds of shale, siltstone, and very fine-grained, feldspathic sandstone 
are common, particularly in its upper half (Mossler, 1992), and in the lower several 
tens of feet of the Mt. Simon Sandstone in the North Branch area.  Inarticulate 
brachiopod shells are locally common in the upper one-third of the formation.  Thin 
beds of quartz-pebble conglomerate occur at several stratigraphic positions, and 
are especially abundant near the base of the formation.  The Mt. Simon Sandstone 
unconformably overlies Mesoproterozoic rocks, burying a surface of erosion that had 
hundreds of feet of relief within the county.  As a result, the thickness of the Mt. Simon 
Sandstone is markedly variable even within small areas such as near Taylors Falls.  
Based on a limited number of full penetrations of the formation, it appears to have 
a maximum thickness of about 250 feet (76 meters) across most of the county.

MESOPROTEROZOIC ROCKS

KEWEENAWAN SUPERGROUP

	 <su	 Sandstone, siltstone, and minor shale—Sedimentary rocks consisting largely of 
reddish-brown mudstone and siltstone, and lithic and feldspathic sandstone (Morey, 
1977).  They are poorly known in Chisago County, represented only by a handful 
of borehole cuttings samples, gamma logs, and two video logs.  Therefore they 
cannot be confidently assigned to individual formations, but likely correlate to parts 
of the Solar Church and/or Fond du Lac Formations.  Mooney and others (1970) 
suggested that some parts of the sedimentary package may be interbedded with mafic 
volcanic rocks.  Geophysical modeling implies that this unit is more than 0.6 mile 
(1 kilometer) thick in the area between the Pine and Douglas faults, and more than 
2 miles (3 kilometers) thick to the west of the Douglas fault, beneath the Paleozoic 
rocks (Allen and others, 1997).

	 <cv	 Chengwatana Volcanic Group—A thin panel of dominantly basaltic volcanic rocks 
located between the Pine and Douglas faults (Cannon and others, 2001).  Rocks of 
the Chengwatana Group are not exposed in Chisago County, but likely are similar 
to exposures in nearby Pine County, which are composed of steeply east-dipping 
flows of basalt, porphyritic basalt, and interlayered conglomeratic sedimentary rocks 
(Boerboom, 2001).

	 <cf	 Clam Falls Volcanics—A thick succession of largely mafic volcanic rocks between 
the Pine fault on the west and the Cottage Grove–Lake Owens fault on the east in 
Wisconsin (Cannon and others, 2001).  Outcrops near Taylors Falls consist of thick, 
coarsely-grained, ophitic basalt flows with thick, fragmental flow tops, and thinner 
flows of fine-grained, intergranular basalt and porphyritic basalt.  All the exposed 
flows contain abundant epidote and actinolite, which indicates that the flows were 
deeply buried (approximately 4.7 miles [7.5 kilometers]; Wirth and others, 1998) 
prior to uplift of the St. Croix Horst (see Plate 2, Fig. 2).  Based on deep seismic 
profiles the thickness of the remaining volcanic rocks in the St. Croix Horst beneath 
the Clam Falls Volcanics is estimated to be approximately 5 miles (8 kilometers).  
The Clam Falls volcanics underlie Paleozoic bedrock across a large expanse of 
southeastern Chisago County.  They subcrop beneath unconsolidated Quaternary 
material in deep bedrock valleys, and are exposed as the uppermost bedrock in the 
Taylors Falls area.
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MAP SYMBOLS

	 Geologic contact—Approximately located.

	 Fault—Faults in Paleozoic rocks are interpreted to be dip-slip.  Letters indicate what is inferred 
to be the most recent relative vertical displacement: U, up; D, down.  Faults are concealed 
by Quaternary sediments and recent alluvium and are inferred from subsurface geologic 
data supplemented by aeromagnetic and gravity data.  Contrasts in magnetic intensity on 
the aeromagnetic map are inferred to be largely the expression of faults in the underlying 
Mesoproterozoic volcanic and sedimentary rocks.  Offsets of Paleozoic strata indicate 
that some of these faults were rejuvenated during and after Early Paleozoic time.

	 Bedrock outcrop

COUNTY LOCATION

DESCRIPTION OF MAP UNITS

PALEOZOIC ROCKS

Nomenclature has been revised for some Paleozoic formations in Minnesota, and some formation 
names formerly in use at the Minnesota Geological Survey have been replaced by names widely 
accepted elsewhere in the region (Mossler, 2008).  Rocks formerly included in the Franconia 
Formation are now assigned to the Tunnel City Group, which is subdivided into the Mazomanie 
Formation and the Lone Rock Formation.  The interval formerly referred to as the Ironton-Galesville 
Sandstone is now named the Wonewoc Sandstone.  More detailed discussion of these revisions is 
given in Mossler (2008).

	 Osp	 St. Peter Sandstone and Prairie du Chien Group (Early to Middle Ordovician)—Limited 
information (one set of borehole cuttings and one natural gamma log) indicates that 
the St. Peter Sandstone and Prairie du Chien group locally unconformably overlie 
the Eau Claire Formation and Wonewoc Sandstone west of the Douglas fault at Rush 
City.  The St. Peter Sandstone consists largely of fine- to medium-grained, quartzose 
sandstone, with interbeds of very fine-grained, feldspathic sandstone that may be 
the Pigs Eye Member (Mossler, 2008).  Strata beneath the St. Peter Sandstone in 
this area are largely fine- to coarse-grained quartzose sandstone, with interbeds of 
sandy, oolitic dolostone.  They most likely correlate to the Shakopee Formation, but 
could instead be equivalent to the lowest part of the Oneota Dolomite (Coon Valley 
Member) of the Prairie du Chien Group.  The maximum thickness of this map unit 
is about 70 feet (21 meters).

	 Opo	 Prairie du Chien Group–Oneota Dolomite (Early Ordovician)—Dominantly tan to gray, 
medium to thickly bedded, finely crystalline dolostone, present only in the extreme 
southeast corner of the county.  Microbial build-ups (thrombolites) are common in 
some beds.  The lowermost few feet include interbeds of fine- to coarse-grained, 
intraclastic, quartzose sandstone, very fine-grained, feldspathic sandstone and 
siltstone, shale, and sandy dolostone of the Coon Valley Member.  The maximum 
preserved thickness of the Oneota Dolomite is about 30 feet (9 meters).

	 _j	 Jordan Sandstone (Late Cambrian)—Dominantly tan to light gray sandstone characterized 
by coarsening-upward sequences consisting of two interlayered facies (Runkel, 
1994), which are not separated on the map.  They are medium- to coarse-grained, 
cross-stratified, generally friable, quartz sandstone; and very fine-grained, commonly 
bioturbated, feldspathic sandstone and lenses of siltstone and shale.  The major 
part of the very fine-grained facies forms a regionally continuous interval that 
gradationally overlies the St. Lawrence Formation (unit _sl), although there are 
lithologically similar intervals intercalated with the medium- to coarse-grained 
facies at higher stratigraphic intervals.  The Jordan Sandstone is generally 60 to 
80 feet (18 to 24 meters) thick where uneroded.  An unconformity, locally marked 
by thin beds of quartz pebble conglomerate and silcrete-cemented sandstone clasts 
(Runkel and others, 2007), separates the Jordan Sandstone from the overlying Oneota 
Dolomite. 

	 _sl	 St. Lawrence Formation (Late Cambrian)—The St. Lawrence Formation is principally 
light gray to yellowish-gray and pale yellowish-green, dolomitic, feldspathic siltstone 
with interbedded, very fine-grained sandstone and shale.  Lenses and layers of light 
gray, finely crystalline, sandy dolostone occur locally, especially in the lowermost 
few feet of the formation (Runkel and others, 2006).  The formation is 25 to 40 feet 
(8 to 12 meters) thick.  The upper contact with the Jordan Sandstone is conformable 
and gradational.  The gradational nature of the contact in well-cuttings and on 
natural gamma logs can make selecting a precise contact between these formations 
problematic.

	 _tc	 Tunnel City Group (Late Cambrian)—The Tunnel City Group, formerly named the 
Franconia Formation (Berg, 1954), varies from about 150 to 180 feet (46 to 55 
meters) in thickness in the map area, except where it pinches out in unconformable 
contact against knobs of Keweenawan basalt near Taylors Falls.  It is divided into 
two formations: the Mazomanie Formation and the Lone Rock Formation (Mossler, 
2008).  The Mazomanie Formation is dominantly white to yellowish-gray, fine- to 
medium-grained, cross-stratified, generally friable, quartz sandstone.  Glauconitic 
grains typically are absent and never exceed 5 percent (Berg, 1954).  Some beds 
contain brown, intergranular dolomite as cement.  Skolithos burrows and sandstone 
intraclasts are common along discrete horizons.  Individual tongues of Mazomanie 
Formation are up to 50 feet (15 meters) thick.  The Mazomanie Formation and the 
Jordan Sandstone are sometimes mistaken for one another in the southern Chisago 
County area because of their lithic similarities and similar thickness.  The Lone 
Rock Formation underlies the Mazomanie Formation and intertongues with it.  It 
consists of pale yellowish-green, very fine- to fine-grained glauconitic, feldspathic 
sandstone and siltstone, with thin, greenish-gray shale partings.  Thin beds with 
dolomitic intraclasts are common.  In the Taylors Falls area, the lower part of the 
Lone Rock Formation locally includes a basalt cobble to boulder conglomerate, 
informally named the "Mill Street conglomerate" (Berkey, 1897; Yochelson and 
Webers, 2006).  Intervals of Lone Rock Formation are as much as 60 feet (18 meters) 
thick in Chisago County.

The upper contact of the Tunnel City Group with the St. Lawrence Formation 
is conformable.  The contact is fairly sharp and the contrast between the siltstone 
and shale of the St. Lawrence Formation and underlying fine- to medium-grained, 
quartzose sandstone in the Mazomanie Formation of the Tunnel City Group is 
distinct.
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Figure 2.  Elevation of the stratigraphic tops of the Wonewoc 
and Mt. Simon Sandstones in Chisago County, showing geologic 
structure of Paleozoic bedrock; scale 1:300,000.  Contour 
interval is 50 feet (15 meters).  In areas where some or all of 
the Wonewoc and Mt. Simon Sandstones are missing because 
of erosion, the contours are inferred from projection vertically 
from other formation contacts, using the estimated full thickness 
of the eroded formations.  The inferred traces of faults and 
folds are shown.  Faults in Mesoproterozoic bedrock that do 
not displace Paleozoic strata are not shown.

Figure 1.  Schematic illustration of the depositional conditions about 490 
million years ago in the area known today as Taylors Falls, Minnesota, and 
St. Croix Falls, Wisconsin.  The Cambrian sedimentary bedrock present in the 
area today was deposited in a shallow sea, with resistant knobs of Proterozoic 
basalt (<cf) emergent as islands.  Very close to these islands, basalt boulders 
and cobbles were incorporated into the Cambrian deposits (_m, _e, _w), locally 
forming conglomerate, such as the Mill Street conglomerate (Berkey, 1897) 
in Taylors Falls. 

Figure 4.  Map of second vertical derivative 
magnetic anomaly data in the northern part 
of Chisago County showing "stream-like" 
anomalies, traced with thin, magenta lines, 
that represent buried bedrock valleys.  The 
buried valleys contain a relatively great 
thickness of moderately magnetic glacial 
deposits, which is visible as a magnetic 
anomaly in areas where the underlying 
regional bedrock is comparatively non-
magnetic.  Together with drillhole data, 
these anomalies were used to produce the 
bedrock topography contours shown on 
the geologic map in the northwestern part 
of the county.  See Chandler and others 
(2002) for additional information on use 
of magnetic anomalies for buried valley 
delineation.

Introduction

This geologic map, cross section, and stratigraphic column depict the bedrock formations exposed 
at the land surface or lying directly beneath unconsolidated Quaternary deposits of variable thickness 
across Chisago County.  The map shows how the bedrock would appear if it were viewed from an 
aerial perspective, as if all the overlying unconsolidated material was stripped away.  Quaternary 
glacial till, lake sediments, outwash, and river alluvium cover the bedrock across most areas (Meyer 
and Lusardi, 2001).  The unconsolidated deposits reach a maximum thickness of about 500 feet 
(152 meters).  Bedrock exposures are limited to the eastern part of the county, mostly along the St. 
Croix River and its tributaries near Taylors Falls.

There are two fundamental kinds of bedrock mapped across Chisago County.  Mesoproterozoic 
bedrock of the Keweenawan Supergroup is about 1.1 billion years old, and consists of reddish-brown 
mudstone and siltstone, lithic and feldspathic sandstone, and volcanic rocks such as basalt.  The 
Keweenawan Supergroup accumulated as part of the development of the Midcontinent Rift System 
(for example Cannon and others, 2001), a large tear in the crust of North America.  A second type 
of bedrock consists of relatively thin layers of sandstone, siltstone, dolostone, and shale deposited 
in shallow seas during the Paleozoic Era, about 500 million years ago (for example Mossler, 
2008).  These bedrock layers eventually buried the Keweenawan Supergroup across nearly all the 
county.  An exception was at Taylors Falls, where resistant knobs of Keweenawan basalt stood as 
topographic highs, emergent as islands in the Paleozoic seas (Fig. 1).  This setting also led to local 
deposition of unusual Paleozoic bedrock that includes boulders and cobbles of basalt that were 
shed from these islands into the shallow sea.  These deposits have been informally called the "Mill 
Street conglomerate" (Berkey, 1897).

The most prominent feature of the bedrock topography (Plate 6) is an anomalously deep and 
linearly extensive buried valley in the southern half of the county that approximates the position 
of the modern Sunrise River system and chain of lakes around the cities of Lindstrom and Chisago 
(see cross section).  The buried valley deepens to the north, and crosses the St. Croix River into 
Wisconsin near the town of Sunrise, where the base of the valley reaches an elevation of less than 
400 feet (122 meters).  Other highlights of the bedrock topography are the knobs of relatively hard, 
resistant Mesoproterozoic basalt (Clam Falls Volcanics, unit <cf) that stand at high elevation near 
Taylors Falls.  The tops of some of the highest knobs exceed 1,050 feet (320 meters), about 300 
feet (91 meters) above the bedrock surface across most of the rest of the county.

Buried stream channels incised into bedrock, in combination with faults with up to about 200 
feet (61 meters) of displacement, and a gentle, overall southward dip of Paleozoic bedrock (Fig. 
2), are a primary influence on the map distribution of bedrock geologic units.  Across much of the 
county the uppermost bedrock consists principally of moderately consolidated layers of sandstone, 
siltstone, and shale of Cambrian age.  The southward dip of the Paleozoic strata is reflected on the 
map by a pattern of progressively older formations northward across the county.  Mesoproterozoic 
rocks of the Midcontinent Rift System are the uppermost bedrock largely where deep buried 
valleys were incised entirely through Cambrian strata, and where resistant knobs of basalt stood 
as topographic highs when Paleozoic strata were deposited.  This general distribution of bedrock 
units is interrupted by faults such as those along the Douglas fault zone on the western boundary 
of the Mesoproterozoic Midcontinent Rift (Sims and Zeitz, 1967), which were reactivated during 
and after early Paleozoic time (Figs. 2, 3; cross section).  As a result, Mesoproterozoic sedimentary 
and volcanic rocks are the uppermost bedrock in some areas where they have been displaced 
upward between faults.  Conversely, down-dropped blocks of bedrock have preserved relatively 
young formations such as the Early Ordovician Oneota Dolomite in a small area in the extreme 
southeastern part of the County.

The production of this map and cross section relied on a number of sources of information, 
including water-well and scientific drilling records (including holes drilled for this project), outcrop 
mapping, geophysical surveys, and published geologic maps of parts of Chisago and adjacent 
counties (Berkey, 1897; Cordua, 1989; Mossler and Bloomgren, 1990; Johnson, 2000; Boerboom, 
2001).  The location of faults is inferred from borehole data, with additional constraints provided by 
patterns in aeromagnetic anomalies (Fig. 3).  Seismic-refraction techniques were used to determine 
the elevation of the bedrock surface in some areas, and linear, sinuous, aeromagnetic anomalies 
were used to constrain the position of channels on the bedrock surface in the northwestern part 
of the county (Fig. 4).  The geophysical data were collected by the Minnesota Geological Survey 
(Chandler and others, 2004), the Minnesota Department of Natural Resources, and the Geology 
and Geophysics Department of the University of Minnesota.  The distribution of all these data is 
shown on the map.  Because the bedrock is concealed by Quaternary sediments across most of the 
county, the distribution of bedrock units and the pattern of faults are strongly dependent on borehole 
records.  The depiction of uppermost bedrock units in the northern approximately one-half of the 
county is more tenuous than in the southern half.  Borehole data are relatively sparse in the north, 
and the lithic differences between the Cambrian formations are so subtle that they are unresolvable 
on many drilling records.  For example, parts of the Eau Claire Formation and Tunnel City Group 
are dominated by beds of tan, white, or brown sandstone that on the basis of drilling records alone 
commonly cannot be distinguished from the Mt. Simon and Wonewoc Sandstones.  Many driller's 
logs of bedrock wells describe only tan or white sandstone, which is a substantial component of 
all the Cambrian formations below the St. Lawrence Formation.

Today's Mill Street conglomerate outcrop
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